Answer:
a. V3 = 19.36m/s
b. β3 = -18.8°
Step-by-step explanation:
Our given data is:
mt = 6.4kg; Vo = [10.2*cos(35°), 10.2*sin(35°)] m/s
m1 = 1.4kg; V1 = [-3.7, 0] m/s
m2 = 1.8kg; V2 = [0, 11.1] m/s
By inspection:
m3 = 3.2kg V3 = [ V3x, V3y]
At the point where the ball explodes, there's only x-component of the velocity, so:
Pix = Pfx and Piy = Pfy
On x-axis:
mt * Vo*cos(35°) = m1 * V1x + m3 * V3x
Solving for V3x:
V3x = 18.33 m/s
On y-axis:
0 = m2 * V2y + m3 * V3y
Solving for V3y:
V3y = -6.24 m/s
Therefore, the magnitude is:
![V3 = √(V3x^2 + V3y^2) = 19.36m/s](https://img.qammunity.org/2020/formulas/physics/college/xj4xmg9s0p0gb8hm6wkejv0l8qrn6tydnn.png)
The angle is:
![\beta 3 = atan((V3y)/(V3x)) = -18.8\°](https://img.qammunity.org/2020/formulas/physics/college/gm4a05vf2o1wjmfgueurhbu1vxgno2hxfo.png)