94.4k views
3 votes
Find the limit as x approaches positive infinity. \displaystyle\lim_{x\to\infty}\dfrac{\sqrt{9x^6+4x^2}}{x^3-1}

User Umm
by
6.0k points

1 Answer

4 votes

Answer:

3

Explanation:

We are given that a function


f(x)=(√(9x^6+4x^2))/(x^3-1)

We have to find the value of given function when x approaches positive infinity.


\lim_(x\rightarrow\infty)f(x)=\lim_(x\rightarrow\infty)(√(9x^6+4x^2))/(x^3-1)


\lim_(x\rightarrow\infty)\frac{x^3\sqrt{9+(4)/(x)}}{x^3(1-(1)/(x^3))}


\lim_(x\rightarrow\infty)\frac{\sqrt{9+(4)/(x)}}{1-(1)/(x^3)}

Because
(1)/(\infty)=0


\lim_(x\rightarrow\infty)(√(9x^6+4x^2))/(x^3-1)=3

Answer: 3

User Lorick
by
5.9k points