Answer:
Y=1370.23m
Step-by-step explanation:
The motion have two moments the first one the time the initial velocity is accelerating then when the engines proceeds to move as a projectile
![a=19 (m)/(s^(2) ) \\voy=vo*sin(\alpha )\\voy=90*sin(39 )\\y_(o)=0m\\y_(f)=y_(o)+v_(oy)*t+(1)/(2)*a*t^(2)\\y_(f)=90*sin(39)*7s+(1)/(2)*19(m)/(s^(2) )*(7)^(2)\\y_(f)=861.97m](https://img.qammunity.org/2020/formulas/physics/high-school/2gawxzwaft2vc4ij4r4k278gckmqysxaon.png)
Now the motion the rocket moves as a projectile so:
![v_(fy)=v_(iy)+a*t\\v_(fy)=90+9.8*7\\v_(fy)=158.6 sin(39)](https://img.qammunity.org/2020/formulas/physics/high-school/1lnsrk2722t812q3yi9mcyawhbw5jzwwjo.png)
Now the final velocity is the initial in the second one
![v_(fy)^(2)=v_(fi)^(2)+2*a*yf \\\\a=g\\](https://img.qammunity.org/2020/formulas/physics/high-school/lw0r1zq6l5cugxvryz7fiiwnrhqdrr786j.png)
The maximum altitude Vf=0
![0=v_(fi)^(2)+2*a*yf \\\\yf=((158.6 sin(39))^(2) )/(2*9.8(m)/(s^(2) ) ) \\yf=508.26m](https://img.qammunity.org/2020/formulas/physics/high-school/k5ob1v25dr9rjjvao541v0zkx1qylxu2yb.png)
So total altitude is both altitude of the motion so:
![Y=508.2m+861.97m\\Y=1370.23m](https://img.qammunity.org/2020/formulas/physics/high-school/bwl39vmhj55lykwn1tatqk5aqjt8inqg69.png)