Answer: 37
Explanation:
As per given description in the question, we have
Population standard deviation :
![\sigma=2.6\text{ miles per gallon}](https://img.qammunity.org/2020/formulas/mathematics/college/eerps88cdkt7vac80b1i4lgf28qpuna5n4.png)
Critical value for 98% confidence interval =
![z_(\alpha/2)=2.33](https://img.qammunity.org/2020/formulas/mathematics/college/57cf9sg1nhketuvdumn3ws065pqjdm3tjj.png)
Margin of error : E= 1 mile per gallon
Formula we use to find the sample size :
![n=((z_(\alpha/2)\cdot \sigma)/(E))^2](https://img.qammunity.org/2020/formulas/mathematics/college/tnflxbwvhkdz6v1uuwqky9de6ou9ttlp24.png)
i.e.
![n=(((2.33)\cdot(2.6))/(1))^2](https://img.qammunity.org/2020/formulas/mathematics/college/f5uhpi1m0esmknqkd4w22pekpb5a4j1h3g.png)
![\Rightarrow\ n=36.699364\approx37](https://img.qammunity.org/2020/formulas/mathematics/college/whbmoqjnpsis2rghorvk7kk64amkzwjsiq.png)
Therefore , the number of automobiles should be used in the test =37