Answer:13 ft/s
Step-by-step explanation:
Given
Balloon velocity is 2 ft/s upwards
Distance between balloon and cyclist is 70 ft
Velocity of cyclist is 19 ft/s
After 3 sec
cyclist traveled a distance of
![d_c=19* 3=57 ft](https://img.qammunity.org/2020/formulas/physics/high-school/vaoo75wi3rvm2soysiefxocms1ldgsvt5h.png)
Distance traveled by balloon in 3 s
![d_b=2* 3=6 ft](https://img.qammunity.org/2020/formulas/physics/high-school/vyzbqrzyk2wv5ts4l68aqcpgvxbta5bcpj.png)
net height of balloon from ground =6+70=76 ft[/tex]
at
![t=3 s](https://img.qammunity.org/2020/formulas/physics/high-school/w5e0zdks8d5j8y2alvn3r4tymum0t7t7sz.png)
distance between cyclist and balloon is
![z=√(76^2+57^2)](https://img.qammunity.org/2020/formulas/physics/high-school/q7ivemhc2n5ntdnhqgyg5zo8inw17uexht.png)
![z=95 ft](https://img.qammunity.org/2020/formulas/physics/high-school/8tal1nqqonr87o3bhmv3tmbj5p771yk9y2.png)
now suppose at any time t cyclist cover a distance of x m and balloon is at a height of h m
thus
![z^2=x^2+y^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1utlrbstnp5cv9pnndh1c96ntx7u6s2nz0.png)
differentiating w.r.t time
![2 z\cdot \frac{\mathrm{d} z}{\mathrm{d} t}=2 x\cdot \frac{\mathrm{d} x}{\mathrm{d} t}+2 y\cdot \frac{\mathrm{d} y}{\mathrm{d} t}](https://img.qammunity.org/2020/formulas/physics/high-school/lecms5qdhd5t2zfb70rlkmsfpin2wihthm.png)
![z\cdot \frac{\mathrm{d} z}{\mathrm{d} t}=x\cdot \frac{\mathrm{d} x}{\mathrm{d} t}+ y\cdot \frac{\mathrm{d} y}{\mathrm{d} t}](https://img.qammunity.org/2020/formulas/physics/high-school/pm4zfmlbs1q5qn2ekj44hig6s1u5bg6auh.png)
![z\cdot \frac{\mathrm{d} z}{\mathrm{d} t}=57* 19+76* 2](https://img.qammunity.org/2020/formulas/physics/high-school/tswjahc3ec5pmdkvt44zbamy8o1qbefbkr.png)
![\frac{\mathrm{d} z}{\mathrm{d} t}=(1235)/(95)=13 ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/vzthk3bdzo30wj5p1coc1gtkec3jgbxe2l.png)