Answer:
![\vec{V} = (\Gamma)/(2R)\vec{A}](https://img.qammunity.org/2020/formulas/physics/college/2r7wqnvsgj3d40gsmx615evscej4qwpusw.png)
Step-by-step explanation:
We define our values according to the text,
R= Radius
Velocity
Strenght of the vortex filament
From this and in a vectorial way we express an elemental lenght of this filmaent as
. So,
![\vec{dl}x\vec{r} = R*dl*\vec{A}](https://img.qammunity.org/2020/formulas/physics/college/8vh9dhvwndcud1thfmu8mboph6kbgn3185.png)
Where
imply a vector acting perpendicular to both vectors.
Applying Biot-Savart law, we have,
![\vec{V} =(\Gamma)/(4\pi)\int\frac{\vec{dl}x\vec{r}}{r^3}](https://img.qammunity.org/2020/formulas/physics/college/pf8iqs2fl7v4e8tn55a87xtibtzc76ul4x.png)
Substituting the preoviusly equation obtained,
![\vec{V} = (\Gamma)/(4\pi)\int\frac{R*dl*\vec{A}}{R^3}](https://img.qammunity.org/2020/formulas/physics/college/1udzwst7zta54uog7qjotg1wega7bu06st.png)
![\vec{V} = (\Gamma)/(4\pi R^2)\int^(2\pi R)_0 dl*\vec{A}](https://img.qammunity.org/2020/formulas/physics/college/dfkutizxclasrbuvbajm9092iqdyvw44sx.png)
![\vec{V} = \frac{\Gamma(2\pi R \vec{A})}{4\pi R^2}](https://img.qammunity.org/2020/formulas/physics/college/2bo470t2a08kmj9k4t3m53gypnknhggv1p.png)
So we can express the velocity induced is,
![\vec{V} = (\Gamma)/(2R)\vec{A}](https://img.qammunity.org/2020/formulas/physics/college/2r7wqnvsgj3d40gsmx615evscej4qwpusw.png)