Answer:
a) The pressure amplitude at this distance is
![\Delta P_(max)=5.8 * 10^(3) N/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/qahf2q44uwvfv6w9bma9hkhsm11vln6gt8.png)
b) The displacement amplitude is
![s_(max)=1.74 * 10^(-4) m](https://img.qammunity.org/2020/formulas/physics/college/jkm4h4om3hfp1pbzg9yu9zkl4825gze43t.png)
c) The distance at which the sound intensity level drops to 50 dB is
![r=89,200Km](https://img.qammunity.org/2020/formulas/physics/college/4izdrbvd7pygykvyorqclb9xi4ui7z0g6u.png)
Step-by-step explanation:
a) We need to convert to dB to watts, so
, then
.
Then we can find Intensity at 100m, so
.
And finally, the pressure amplitude at this distance will be
![\Delta P_(max)=√(\rho vI)=\sqrt{(1.29kg/m^(3))(343m/s)(75.6 * 10^(3) W/m^(2))} =5.8 * 10^(3) N/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/zr5qbse0flw4olkm0kmkwn31jsez347kfy.png)
b) Using
, with
, thus,
![s_(max)=(\Delta P_(max))/(\rho \omega v)= (5.8 * 10^(3) N/m^(2))/((1.29kg/m^(3)) (\pi 24 * 10^(3) s^(-1)) (343m/s) )= 1.74 * 10^(-4) m](https://img.qammunity.org/2020/formulas/physics/college/n9lehk1irsmgaknbz94ypxymqoxysmeat5.png)
c) We need to find intensity, so
, then,
.
Finally, the distance at which the sound intensity level drops to 50 dB will be
![r=\sqrt{(P_(pro))/(4 \pi I)} =\sqrt{(10^(10)W)/(4 \pi (1.00 * 10^(-7) W/m^(2)))}=89.2 * 10^(6)m=89,200Km](https://img.qammunity.org/2020/formulas/physics/college/8yf6hjf2r6q5uhsrauuccr0e54fytyki03.png)