Answer:
![v(7s)=46.38 m/s](https://img.qammunity.org/2020/formulas/physics/college/6tf6l2lnk44dfng2zkl9n3kuktl903gpus.png)
(impact)
(impact)
Step-by-step explanation:
The equation for height is
![s(t)=58t-0.83t^2](https://img.qammunity.org/2020/formulas/physics/college/sj6m65u4x4fppb5ssus1i20eticfsolhxf.png)
We derive the equations for velocity and acceleration by derivating it respect with time:
![v(t)=(ds(t))/(dt)=58-2(0.83)t=58-1.66t](https://img.qammunity.org/2020/formulas/physics/college/hfywmnbzbc6r27jxwpx75o785583a5v9hf.png)
![a(t)=(dv(t))/(dt)=-1.66](https://img.qammunity.org/2020/formulas/physics/college/uxo8e6zlr4qruxfupc5w533m4a1jvzawj7.png)
So we have (adding units at the end):
The velocity after 7s (evaluating the velocity formula for 7):
![v(7)=58-1.66(7)](https://img.qammunity.org/2020/formulas/physics/college/jomx271ep3ae420cfm1650f2a58ska99xw.png)
![v=46.38 m/s](https://img.qammunity.org/2020/formulas/physics/college/1vds51kj4oc337zrjfrnfvo8h3559zighq.png)
The time it hits the moon (when the height is null again):
![s(t)=0=58t-0.83t^2](https://img.qammunity.org/2020/formulas/physics/college/hku7eyqqvls0n40w42w79gltzvzuvqoeo9.png)
One solution is t=0, which corresponds to departure of course, but we want the other solution, which is for impact.
![0=58-0.83t](https://img.qammunity.org/2020/formulas/physics/college/k2q035jg3c95ir239choupd3wiju7vw17l.png)
![0.83t=58](https://img.qammunity.org/2020/formulas/physics/college/ip06eeonj4he61ekc2t4q9k52obbvl7r9v.png)
![t=69.88s](https://img.qammunity.org/2020/formulas/physics/college/uns9hq0190olxx0zevoym7ux02w9pcpin6.png)
The velocity at the time it hits the moon:
![v(69.88)=58-1.66(69.88)](https://img.qammunity.org/2020/formulas/physics/college/6qcj5qkzm1zf35uo3qqmb13g4od2bptt9r.png)
![v=-58 m/s](https://img.qammunity.org/2020/formulas/physics/college/bgqr7ao49y4fqpw9qqv5j789feuqthu5g8.png)
As it should be since the arrow left the moon at 58m/s.