129k views
1 vote
12a^3b^2 +18a²b^2 – 12ab^2
Factor completely

1 Answer

4 votes

The factorization of 12a^3b^2 +18a²b^2 – 12ab^2 is
6 a b^(2)(a+2)(2 a-1)

Solution:

Given, expression is
12 a^(3) b^(2)+18 a^(2) b^(2)-12 a b^(2)

We have to factorize the given expression completely.

Now, take the expression


12 a^(3) b^(2)+18 a^(2) b^(2)-12 a b^(2)

Taking
b^2 as common term,


b^(2)\left(12 a^(3)+18 a^(2)-12 a\right)

Taking "a" as common term,


b^(2)\left(a\left(12 a^(2)+18 a-12\right)\right)

Taking "6" as common term,


b^(2)\left(a\left(6\left(2 a^(2)+3 a-2\right)\right)\right)

Splitting "3a" as "4a - a" we get,


b^(2)\left(a\left(6\left(2 a^(2)+4 a-a-2\right)\right)\right)


\begin{array}{l}{b^(2)(a(6(2 a(a+2)-1(a+2))))} \\\\ {b^(2)(a(6((a+2) *(2 a-1))))} \\\\ {6 a b^(2)(a+2)(2 a-1)}\end{array}

Hence, the factored form of given expression is
6 a b^(2)(a+2)(2 a-1)

User Saada
by
7.7k points