Answer:
![-3x^2+29x-150+(946x^2-341x-756)/(x^3+6x^2-3x-5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/onhnenogf51hk9e2534h6qfqow2cv7gufs.png)
Explanation:
You have to divide the polynomial
by the polynomial
![x^3+6x^2-3x-5:](https://img.qammunity.org/2020/formulas/mathematics/high-school/krovnji7j2c3sjq2y2e6he7dud8k7htwto.png)
First, multiply the polynomial
by
and subtract the result from the polynomial
![-3x^5+11x^4+33x^3-26x^2-36x-6:](https://img.qammunity.org/2020/formulas/mathematics/high-school/j1aul6oeycr1n8qeozrnlcx4raxf4w0d01.png)
![-3x^5+11x^4+33x^3-26x^2-36x-6-(-3x^2)(x^3+6x^2-3x-5)\\ \\=-3x^5+11x^4+33x^3-26x^2-36x-6+3x^5+18x^4-9x^3-15x^2\\ \\=29x^4+24x^3-41x^2-36x-6](https://img.qammunity.org/2020/formulas/mathematics/high-school/yu25463gk9sj0b0ra5bdo4a3703dz49y04.png)
Now, multiply the polynomial
by
and subtract the result from the polynomial
![29x^4+24x^3-41x^2-36x-6:](https://img.qammunity.org/2020/formulas/mathematics/high-school/r1fwnidpmltzgujhq2e6tr0bf80wiz46df.png)
![29x^4+24x^3-41x^2-36x-6-29x(x^3+6x^2-3x-5)\\ \\=29x^4+24x^3-41x^2-36x-6-29x^4-174x^3+87x^2+145x\\ \\=-150x^3+46x^2+109x-6](https://img.qammunity.org/2020/formulas/mathematics/high-school/cswxfg2uap291wwm33kfs9mah5efwvs4ca.png)
At last, multiply the polynomial
by
and subtract the result from the polynomial
![-150x^3+46x^2-181x-6:](https://img.qammunity.org/2020/formulas/mathematics/high-school/xa0e23lwzr623tgmx0vk00vxsoz0i8ahwn.png)
![-150x^3+46x^2+109x-6-(-150)(x^3+6x^2-3x-5)\\ \\=-150x^3+46x^2+109x-6+150x^3+900x^2-450x-750\\ \\=946x^2-341x-756](https://img.qammunity.org/2020/formulas/mathematics/high-school/sye9uubup5055do8qgtpguchvvr03jum4a.png)
So,
![(-3x^5+11x^4+33x^3-26x^2-36x-6)/(x^3+6x^2-3x-5)=\\ \\=((-3x^2+29x-150)(x^3+6x^2-3x-5)+946x^2-341x-756)/(x^3+6x^2-3x-5)=\\ \\=-3x^2+29x-150+(946x^2-341x-756)/(x^3+6x^2-3x-5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2i53j00q8bhfxgvb3ib4o8iduzm6o8ajfi.png)