182k views
0 votes
Please help with this I am completely stuck on it

Please help with this I am completely stuck on it-example-1

1 Answer

7 votes

Answer:


f(x)=\sqrt[3]{x-4} , g(x)=6x^(2)\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^(2) -4

Explanation:

Given:

The function,
H(x)=\sqrt[3]{6x^(2)-4}

Solution 1:

Let
f(x)=\sqrt[3]{x}

If
f(g(x))=H(x)=\sqrt[3]{6x^(2)-4}, then,


\sqrt[3]{g(x)} =\sqrt[3]{6x^(2)-4}\\g(x)=6x^(2)-4

Solution 2:

Let
f(x)=\sqrt[3]{x-4}. Then,


f(g(x))=H(x)=\sqrt[3]{6x^(2)-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^(2)-4} \\g(x)-4=6x^(2)-4\\g(x)=6x^(2)

Similarly, there can be many solutions.

User Eduardo Reveles
by
8.3k points

No related questions found