Answer:
A. The maximum heigh is 81 feet
B. The ball will reach the maximum heiight at 2.25 seconds
C. The domain of the function is
![t\in [0,4.5]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4coaqrnra67hvavfzm59zzvt0zxr92g0qy.png)
D. The range of the function is
![h(t)\in [0,81]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qxkuj2pfkmq2uw291pocxxzt3d1pg4t6ce.png)
E. 4.5 seconds
Explanation:
A ball was thrown into the air with an initial velocity of 72 feet per second. The height of the ball after t seconds is represented by the equation:
![h= -16t^2 + 72t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9dsb1mnkx7y3m3px0oyo8ogh1h41o4dksp.png)
The maximum height will be at parabola's vertex. Find it:
![t_v=(-b)/(2a)\\ \\t_v=-(72)/(2\cdot (-16))=(72)/(32)=(9)/(4)=2.25\\ \\h(t_v)=-16\cdot t_v^2+72\cdot t_v\\ \\h(2.25)=-16\cdot 2.25^2+72\cdot 2.25=81](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5rxrcjgc9g8vmg9plthudrh55sgkb4lhp7.png)
A. The maximum heigh is 81 feet
B. The ball will reach the maximum heiight at 2.25 seconds
C. Find where the parabola intersects the x-axis:
![h=0\Rightarrow -16t^2+72t=0\\ \\t(-16t+72)=0\\ \\t_1=0\ \text{or}\ 16t=72,\ t_2=(9)/(2)=4.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvp7dwjozvroihuomn60p72gvs8llmx2lz.png)
So, the domain of the function is
![t\in [0,4.5]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4coaqrnra67hvavfzm59zzvt0zxr92g0qy.png)
D. The range of the function is
![h(t)\in [0,81]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qxkuj2pfkmq2uw291pocxxzt3d1pg4t6ce.png)
E. The ball is at the air for 4.5 seconds