Answer:
53.7 %
Explanation:
Given:
Number of trials,
![n=7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/331nqdspjcbklsylkplkdqf9vz46ujrw5x.png)
Number of successes,
![x=2,3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ifty0gnsmdf87eu9hyy26z52b1s6zlzkdf.png)
Probability of success,
![p=42 \%= (42)/(100)=0.42](https://img.qammunity.org/2020/formulas/mathematics/middle-school/no4h4c2j4m7ddjmdo7t3h59796s8ho44ic.png)
Therefore, probability of failure,
![q=1-p=1-0.42=0.58](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b9zjxj6cu3ek5yzu46psoijjedg2wz2pc9.png)
The Bernoulli's distribution for
successes out of
trials is given as:
![P(X=x)=_(x)^(n)\textrm{C}p^(x)q^((n-x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d4031xfzcix2hnr1w64epsbmjtzob6ajlb.png)
So, probability of 2 or 3 successes is given as:
![P(X=2\textrm{ or}X=3)=P(X=2)+P(X=3)\\\\P(X=2\textrm{ or}X=3)=_(2)^(7)\textrm{C}(0.42)^(2)(0.58)^((7-2))+_(3)^(7)\textrm{C}(0.42)^(3)(0.58)^((7-3))\\\\P(X=2\textrm{ or}X=3)=21* (0.42)^(2)(0.58)^(5)+35* (0.42)^(3)(0.58)^(4)\\\\P(X=2\textrm{ or}X=3)= 0.5365=53.65 \% \approx 53.7 \%](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9k8v6kcrsm6ui6pjadslx81tpgxvi1cfik.png)
Therefore, the probability of 2 or 3 successes in 7 trials of a binomial experiment is 53.7 %.