Answer:
![\displaystyle (dy)/(dx) = (-4)/((2x - 1)^3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uf7ydpoem0nmtn034r0sv983aq667qp7yo.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/66xycb9zlmvgpjxd6pken7kl0vwhdmg9nq.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ng1b0frayturcauvihrqe3qtb65llra87c.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = (1)/((2x - 1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/56a02cbf1e2293zkuxmutdqmeg35qqp4ho.png)
Step 2: Differentiate
- Rewrite:
![\displaystyle y = (2x - 1)^(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fo18kz0dhkeaaxyo8htt75fwn80ir6zdnl.png)
- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = -2(2x - 1)^(-3)(2x - 1)'](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8dwcw2qqwxyckrukkcw64hkjx5l9gdyxsv.png)
- Basic Power Rule [Derivative Properties]:
![\displaystyle y' = -4(2x - 1)^(-3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/45ejq8cr5clnct2s0hmgbb1vprfzdp3sps.png)
- Rewrite:
![\displaystyle y' = (-4)/((2x - 1)^3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cny67y7rk2g3mufpfqtbpdwh1rx2x4ylgw.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation