144k views
0 votes
Sin ^6x-cos^6÷1-sin^2x*cos^2x=1-2cos^2x



1 Answer

3 votes

Answer:


(\sin^(6) x-\cos^(6)x )/(1-\sin^(2)x \cos^(2)x  ) =1-2\cos^(2) x proved.

Explanation:

We have to prove that
(\sin^(6) x-\cos^(6)x )/(1-\sin^(2)x \cos^(2)x  ) =1-2\cos^(2) x

So, the left hand side =
(\sin^(6) x-\cos^(6)x )/(1-\sin^(2)x \cos^(2)x  )

=
\frac{(\sin^(2)x-\cos^(2) x )(\sin^(4) x+\cos^(4)x+\sin^(2)x \cos^(2)x)   }{{1-\sin^(2)x \cos^(2)x  }} {Since we have the formula
a^(3) -b^(3)= (a-b) (a^(2)  +ab+b^(2) )}

=
\frac{(\sin^(2)x-\cos^(2) x )[(\sin^(2)x+\cos^(2)x  )^(2)-2\sin^(2)x\cos^(2) x+ \sin^(2)x\cos^(2) x ]}{{1-\sin^(2)x \cos^(2)x  }} {Since we have the formula
a^(2)+b^(2) = (a+b)^(2) -2ab}

=
((\sin^(2)x-\cos^(2) x )(1-\sin^(2)x \cos^(2)x))/((1-\sin^(2)x \cos^(2)x))

=
(\sin^(2)x-\cos^(2) x )

=
1-2\cos^(2) x {Since
\sin^(2)x =1-\cos^(2) x}

= Right hand side

Hence, proved.

User Jjtbsomhorst
by
8.7k points

No related questions found