144k views
0 votes
Sin ^6x-cos^6÷1-sin^2x*cos^2x=1-2cos^2x



1 Answer

3 votes

Answer:


(\sin^(6) x-\cos^(6)x )/(1-\sin^(2)x \cos^(2)x  ) =1-2\cos^(2) x proved.

Explanation:

We have to prove that
(\sin^(6) x-\cos^(6)x )/(1-\sin^(2)x \cos^(2)x  ) =1-2\cos^(2) x

So, the left hand side =
(\sin^(6) x-\cos^(6)x )/(1-\sin^(2)x \cos^(2)x  )

=
\frac{(\sin^(2)x-\cos^(2) x )(\sin^(4) x+\cos^(4)x+\sin^(2)x \cos^(2)x)   }{{1-\sin^(2)x \cos^(2)x  }} {Since we have the formula
a^(3) -b^(3)= (a-b) (a^(2)  +ab+b^(2) )}

=
\frac{(\sin^(2)x-\cos^(2) x )[(\sin^(2)x+\cos^(2)x  )^(2)-2\sin^(2)x\cos^(2) x+ \sin^(2)x\cos^(2) x ]}{{1-\sin^(2)x \cos^(2)x  }} {Since we have the formula
a^(2)+b^(2) = (a+b)^(2) -2ab}

=
((\sin^(2)x-\cos^(2) x )(1-\sin^(2)x \cos^(2)x))/((1-\sin^(2)x \cos^(2)x))

=
(\sin^(2)x-\cos^(2) x )

=
1-2\cos^(2) x {Since
\sin^(2)x =1-\cos^(2) x}

= Right hand side

Hence, proved.

User Jjtbsomhorst
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.