221k views
3 votes
I need you to solve this problem

\frac{49 - x^(2) }{x {}^(2) - 14x + 49 }


User Dincerm
by
8.7k points

1 Answer

3 votes


{\texttt{\huge{\purple{SOLUTION :-}}}}

GIVEN :-


\frac{49 - x^(2) }{x {}^(2) - 14x + 49 }

Firstly,

factorizing the numerator


49 - {x}^(2) = {7}^(2) - {x}^(2)


49 - {x}^(2) = (7 - x)(7 + x)

by using the formulae ⤵️


\underline{ {a}^(2) - {b}^(2) = (a + b)(a - b)}

Secondly,

factorizing the denominator


x {}^(2) - 14x + 49 = {x}^(2) - (7 + 7)x + 49


x {}^(2) - 14x + 49 = {x}^(2) - 7x - 7x + 49


x {}^(2) - 14x + 49 = x(x - 7) - 7(x - 7)


x {}^(2) - 14x + 49 = (x - 7)(x - 7)

NOW PUTTING ALL THE VALUES OF THE NUMERATOR AND THE DENOMINATOR...


\frac{49 - x^(2) }{x {}^(2) - 14x + 49 } = ((7 - x)(7 + x))/((x - 7)(x - 7))


\frac{49 - x^(2) }{x {}^(2) - 14x + 49 } = (-(x - 7)(7 + x))/((x - 7)(x - 7))


\frac{49 - x^(2) }{x {}^(2) - 14x + 49 } = (-(7 + x))/((x - 7))

Answer....

User CEeNiKc
by
8.1k points

No related questions found