Answer:
The coordinates of the point S = (12, -22)
Explanation:
The coordinate points of T = (0,6)
Mid point of ST = (6,-8)
Let the coordinates of S = (a,b)
Now, BY MID POINT FORMULA:
If (x, y) and (z, w) are the line point joining line segment and (p,q) is the coordinate of mid point. Then
![(p, q) = ((x + z)/(2) , (y + w)/(2) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a887v0n9xkqcc98wzfts5fezyo3vcsz0ww.png)
So, here similarly,
![(6, -8) = (((0+a))/(2) , (6+ b)/(2) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/icu6tp5p7657fnnyvuzopsheibtp2hq2gf.png)
⇒
![6 = (0+a)/(2) , -8 = (6+ b)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2vpripgu5phwnqmra2vkanxxih9c6szhsy.png)
⇒ a =2 x 6 = 12, b = 2 (-8) -6 = -22
⇒(a,b) = (12, -22)
Hence, the coordinates of the point S = (12, -22)