Answer:
The final kinetic energy of the system is 8.58 m/s
Solution:
As per the question:
Radius of merry-go-round, R = 2.93 m
Mass of merry-go-round, m = 165 kg
Angular speed,
![\omega = 0.691\ rev/s](https://img.qammunity.org/2020/formulas/physics/college/13mgwwiuonlfxvgl6lbf4qyudc3cj3f4u7.png)
Velocity of the merry-go-around, v = 3.11 m/s
Mass of man, M = 62.4 kg
Now,
To calculate the moment of inertia of the merry-go-round:
![I_(M) = [tex](1)/(2)mR^(2)](https://img.qammunity.org/2020/formulas/physics/college/1d81x1enx5b853haizq4qvjao85z4rt0nh.png)
![I_(M) = [tex](1)/(2)* 165* (2.93)^(2) = 708.25\ kg.m^(2)](https://img.qammunity.org/2020/formulas/physics/college/tm7im1w4s6yxlmnkzytnj3m6wtpydn6dpo.png)
Initially, the angular momentum is given by:
The final angular momentum is given by:
![L' = I\omega' = 1243.95\omega'](https://img.qammunity.org/2020/formulas/physics/college/onr7eqclo0dz2d7oxg5z7df8aimmr9c26b.png)
where
= final angular velocity
Now, by conservation of momentum:
Initial momentum = Final momentum
![L' = L](https://img.qammunity.org/2020/formulas/physics/college/s8szysbssx3xfdci780oh9vjpy9fdt3ldn.png)
![1243.95\omega' = 3643.60](https://img.qammunity.org/2020/formulas/physics/college/y4kx0lupxg5nn4ej2jew9xw4j15i71d2so.png)
![\omega' = 2.93\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/lx0yjgqzjg3z546nszsq15u8tf96zpmw8l.png)
The final linear velocity, v' of the system:
![\omega' = (v')/(R)](https://img.qammunity.org/2020/formulas/physics/college/8nrpyakp02ahl9ofeman2m5eni92jk1lir.png)
![v' = R\omega' = 2.93* 2.93 = 8.58\ m/s](https://img.qammunity.org/2020/formulas/physics/college/mm090swrig33u6fjax5tuts9ynaxaiuknz.png)