Answer:
Rate of change in height of the water level is 2.91 cm per second.
Explanation:
Height of the inverted pyramid = 10 cm
Length of the square base = 7 cm
If water is filled up to the level of h cm then the volume of water up to height h will be
V =
![(1)/(3)(\text {Area of the base})* (h)](https://img.qammunity.org/2020/formulas/mathematics/college/sowncdjgh8l74i5ufn30c1duew6wrv30iu.png)
V =
![(1)/(3)(x^(2) )* (h)](https://img.qammunity.org/2020/formulas/mathematics/college/8qktv6t8mfbbn2v0bft2d9fa0vyfbj55d9.png)
It is given that rate of water is filling with 70 cubic centimeters per second.
![(dV)/(dt)=70](https://img.qammunity.org/2020/formulas/mathematics/college/tq790w2kqcihpj3x0ctro1c7li85sa16mi.png)
From two similar triangles in the figure attached,
![(x)/(h)=(7)/(10)](https://img.qammunity.org/2020/formulas/mathematics/college/k34j7ybech7e8r5nv871ovc60h0umypss9.png)
![x=(7h)/(10)](https://img.qammunity.org/2020/formulas/mathematics/college/lbnuu925ybffz3egzbuxl85sprml5l9i1l.png)
By replacing the value of h,
V =
![(1)/(3)((7h)/(10))^(2)h](https://img.qammunity.org/2020/formulas/mathematics/college/jhvck8bacss1so64wchcmwxncf60wwptd2.png)
V =
![(1)/(3)((49h^(2) )/(100))h](https://img.qammunity.org/2020/formulas/mathematics/college/n327zzf8p877qj9zy4of6mxbbeglygxn0l.png)
V =
![(1)/(3)((49h^(3))/(100))](https://img.qammunity.org/2020/formulas/mathematics/college/p90l4j6q0jswmrpscn7giji38y63hfjw10.png)
Now we integrate the equation with respect to time 't'
![(dV)/(dt)=(d)/(dt)((1)/(3)* (49h^(3) )/(100))](https://img.qammunity.org/2020/formulas/mathematics/college/uwl1uzghglag7mwi0h2uri5mlboe3vgt60.png)
70 =
![(49h^(2) )/(100)* (dh)/(dt)](https://img.qammunity.org/2020/formulas/mathematics/college/5crpqyt1sumkoq9kdfffqcoyij86q8wmqq.png)
![(dh)/(dt)=(100* 70)/(49h^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/5ys51q4n1f7od80x7rb7ssfu38neggdsh4.png)
For h = 7 cm
![(dh)/(dt)=(70* 100)/(49* 49)](https://img.qammunity.org/2020/formulas/mathematics/college/wb7akj4w3gkgegtsqaco87jd85nwwkju14.png)
![(dh)/(dt)=2.91](https://img.qammunity.org/2020/formulas/mathematics/college/hez7eg4v6x0jk7g4rl2easgqvm1nd0o95s.png)
Therefore, rate of change in height of the water level is 2.91 cm per second.