Answer:
4.55%
Explanation:
Data provided in the question:
Given,
Number of samples of capsules, n = 25
mean amount of ingredient, μ = 150 mg
Standard deviation, σ = 5
Now,
![\bar{x}_1=148\ mg](https://img.qammunity.org/2020/formulas/mathematics/college/y11ou466yaf9kq1v9bhke6z0ed7e1qiu7n.png)
z-value will be
⇒ z₁ =
![\frac{\bar{x}_1-\mu}{((\sigma)/(\sqrt n))}](https://img.qammunity.org/2020/formulas/mathematics/college/wjcfa8bwbg7udi5gidbfympxmojl8neekd.png)
or
⇒ z₁ =
![(148-150)/(((5)/(√(25))))](https://img.qammunity.org/2020/formulas/mathematics/college/i2jam90khw6ioa4uqcwsh5m7svh8y3ocnr.png)
or
⇒ z₁ = - 2
similarly,
for
z-value will be
⇒ z₂ =
![\frac{\bar{x}_2-\mu}{((\sigma)/(\sqrt n))}](https://img.qammunity.org/2020/formulas/mathematics/college/qcnrhzu86rkwmbltmruxr70nks8c86mwzv.png)
or
⇒ z₂ =
![(152-150)/(((5)/(√(25))))](https://img.qammunity.org/2020/formulas/mathematics/college/gi8x06xhqpyk5b4g2pxgldqzz1isjiwk4g.png)
or
⇒ z₂ = 2
Now,
P( -2 < x < 2) = P( z < 2) - P(z < -2)
from the z-value vs P table, we have
= 0.9772498 - 0.0227501
= 0.9545
therefore,
Probability that the production is stopped = 1 - 0.9545
⇒ 0.0455 or
⇒ 0.0455 × 100%
= 4.55%