Answer:
The mean is
![x=0.503(mg)/(L)](https://img.qammunity.org/2020/formulas/chemistry/college/go8dg2pebbr83r843ixcuzn3cmgyr9y67i.png)
The 90% confidence interval is:
![i_(0.90)=[0.492(mg)/(L),0.514(mg)/(L)]](https://img.qammunity.org/2020/formulas/chemistry/college/iq4toeyca6ipzqtv6azqgtw2jswzgdro7h.png)
Step-by-step explanation:
1. First organize the data:
![x_(1)=0.487](https://img.qammunity.org/2020/formulas/chemistry/college/cmtjowyq5xgzffhu7p7phi1zu2cxxw35d8.png)
![x_(2)=0.487](https://img.qammunity.org/2020/formulas/chemistry/college/wi2hjs058dzrdgvyykp7zxx3cbr0shd04v.png)
![x_(3)=0.511](https://img.qammunity.org/2020/formulas/chemistry/college/aeyssgnxxv2ohgf812no2a3kj3lginv6hs.png)
![x_(4)=0.511](https://img.qammunity.org/2020/formulas/chemistry/college/ax5p45yz8dgdjdlvh4kl34u3a0za8ugnq6.png)
![x_(5)=0.519](https://img.qammunity.org/2020/formulas/chemistry/college/3aru1rbiavouebxnecprh9e935ddsqn165.png)
As there are 5 data, the sample size (n) is n=5
2. Calculate the mean x:
The mean is calculated adding up all the data and divide them between the sample size.
![x=(0.511+0.487+0.511+0.487+0.519)/(5)](https://img.qammunity.org/2020/formulas/chemistry/college/pha4hdf9l95upkzjazjz2yxa36toiv0p1u.png)
![x=0.503(mg)/(L)](https://img.qammunity.org/2020/formulas/chemistry/college/go8dg2pebbr83r843ixcuzn3cmgyr9y67i.png)
3. Find 90% confidence interval.
The formula to find the confidence interval is:
(Eq.1)
where x is the mean, d is the standard deviation and n is the sample size.
And
![1-\alpha=0.90](https://img.qammunity.org/2020/formulas/chemistry/college/sjexlvo5392wcxbg3af06bswn2xc0l58cq.png)
![\alpha=0.10](https://img.qammunity.org/2020/formulas/business/college/1skh60auls0tmlpsk205asdi7skzs6rib2.png)
![(\alpha)/(2)=0.05](https://img.qammunity.org/2020/formulas/chemistry/college/ikg3qx4ff9a8y5wdf3yuk2x48chyu71lsi.png)
![z_(0.05)=1.645](https://img.qammunity.org/2020/formulas/chemistry/college/ywgseb122ulrlbxmmf6mogdmkxzyeagxf9.png)
4. Find the standard deviation
![d=\sqrt{((x_(1)-x)^(2)+(x_(2)-x)^(2)+(x_(3)-x)^(2)+(x_(4)-x)^(2)+(x_(5)-x)^(2))/(n-1)}](https://img.qammunity.org/2020/formulas/chemistry/college/b6ot530y7coy1klvotly2s0nunokcwlxun.png)
![d=\sqrt{((0.487-0.503)^(2)+(0.487-0.503)^(2)+(0.511-0.503)^(2)+(0.511-0.503)^(2)+(0.519-0.503)^(2))/(4)}](https://img.qammunity.org/2020/formulas/chemistry/college/av1a8p1k2b67g40ss4trg7297n3cei5fly.png)
![d=\sqrt{((-0.016)^(2)+(-0.016)^(2)+(0.008)^(2)+(0.008)^(2)+(0.016)^(2))/(4)}](https://img.qammunity.org/2020/formulas/chemistry/college/5zrii7udlj1qe00qkrls8qht2yw8parwbt.png)
![d=\sqrt{2.24*10^(-4)}](https://img.qammunity.org/2020/formulas/chemistry/college/iy31p2di458iw9ebsy2cp6bddyolv2hqnv.png)
![d=0.015](https://img.qammunity.org/2020/formulas/chemistry/college/32o98usbbgjdqbta68arvy4fo8y7x1y0z9.png)
5. Replace values in (Eq.1):
![i_(0.90)=[0.503+/-1.645*((0.015)/(2.236))]](https://img.qammunity.org/2020/formulas/chemistry/college/3qo493sjsg0z3o9n2rcwmyuntj0bxb9psc.png)
For the addition:
![i_(0.90)=[0.503+1.645*((0.015)/(2.236))]](https://img.qammunity.org/2020/formulas/chemistry/college/2ortat07vsk723848ajmr2at0joh0kvtfs.png)
![i_(0.90)=0.514](https://img.qammunity.org/2020/formulas/chemistry/college/sqyueoso138uesl1o6mzz5zzxdk4yumg1n.png)
For the subtraction:
![i_(0.90)=[0.503-1.645*((0.015)/(2.236))]](https://img.qammunity.org/2020/formulas/chemistry/college/hwkmgrqtilnpirw15pf4t04smkz39k361p.png)
![i_(0.90)=0.492](https://img.qammunity.org/2020/formulas/chemistry/college/y2mln3pubrp4ace35qca8swfa3nuvh9mrg.png)
The 90% confidence interval is:
![i_(0.90)=[0.492,0.514]](https://img.qammunity.org/2020/formulas/chemistry/college/92drjb9rnc337gbkgbxkz5mezsgmelzvn9.png)