Answer:
The possible dimensions of the rectangle are (x+7) and (x -4).
Explanation:
Here, the given expression for area of the rectangle is:
![x^(2) + 3x - 28](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xtnhkwdsk22cwt01p12ekfzn5xzb59224n.png)
Now, Area of the rectangle = Length x Width
Hence, to find the dimensions, we need to factorize the given trinomial.
So,
![x^(2) + 3x - 28 = x^(2) + 7x - 4x- 28](https://img.qammunity.org/2020/formulas/mathematics/middle-school/myqej19b8wz0d214urnoay1rdn7os59pao.png)
⇒
![x^(2) + 7x - 4x- 28 = x(x+7)-4(x+7) = (x+7)(x-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w1z0yp9kgpstjvj7bzmu5ncgwuaivwrty1.png)
⇒
![x^(2) + 3x - 28 = (x+7)(x-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/46exogzujukvgog8ylkqdeumr5gs2q0ay4.png)
So, the factors of the polynomial are (x+7) and (x -4)
Hence, the possible dimensions of the rectangle are (x+7) and (x -4).