Answer with explanation:
As per given , we have
n= 88
![\overline{x}=36.5\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/l9yh939gkc6fd1p56b36fz37ghxyhmuhoi.png)
Population standard deviation :
![\sigma=8.6\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/3jilhao4dp6duyc297tglcu0ok380po165.png)
Critical value for 98% confidence interval :
n
Margin of error :
![E=z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/high-school/gvatqh5db2dr7iiytoygd6f5zzok8cgzbi.png)
![={2.33}(8.6)/(√(88))\\\\=2.13605797717\approx2.14](https://img.qammunity.org/2020/formulas/mathematics/college/snnhiyywjjedb66kvxu36iz3636jdr545e.png)
98% confidence interval :
![36.5\pm 2.14](https://img.qammunity.org/2020/formulas/mathematics/college/3be6dbks7dsntz9clzgv2l6rzljc5l683v.png)
![(36.5-2.14,\ 36.5+2.14)=(34.36,\ 38.64)](https://img.qammunity.org/2020/formulas/mathematics/college/9k86sv4q9eb3mz1j7cjknbj9qy0c5lyir5.png)
The 98% confidence interval (34.36, 38.64) found by normal distribution with the appropriate calculations for a standard deviation that is known is narrower than the interval (28.7,44.3) found by the t-distribution (population standard deviation is unknown) .