Answer: 0.2643
Explanation:
Let p be the population proportion and
be the sample proportion .
As per given question , we have
![p=0.14\\\\ \hat{p}=0.13\\\\ n=478](https://img.qammunity.org/2020/formulas/mathematics/college/tl3xff24yhjvvsu84cauxykgvdcg1kpezk.png)
z-score :
![\frac{\hat{p}-p}{\sqrt{(p(1-p))/(n)}}](https://img.qammunity.org/2020/formulas/mathematics/college/59ahehx1qlsjttpgm9bh62p6jsgc1ub56t.png)
![z=\frac{0.13-0.14}{\sqrt{(0.14(1-0.14))/(478)}}\\\\=-0.630087269176\approx-0.63](https://img.qammunity.org/2020/formulas/mathematics/college/rxof4oyzzvmjj98u8unm8iul03vlsuof18.png)
The required probability ( using z-table ):-
![P(z<-0.63)=1-P(z<0.63)\\\\=1- 0.7356527=0.2643473\approx0.2643](https://img.qammunity.org/2020/formulas/mathematics/college/tf069vuihn3waw6fllhgqwy8vfv150d7e5.png)
Hence, the probability that the proportion of books checked out in a sample of 478 books would be less than 13% = 0.2643