181k views
4 votes
5. Find the discriminant of 15x2 = 4x – 1 and describe

the nature of the roots of the equation. Then solve the
equation by using the Quadratic Formula.

1 Answer

0 votes

Answer:

a) The discriminant of the equation = - 44

b)The nature of the roots will be imaginary.

c)
x = (2 +√(11) i)/(15)  or, x = (2 - √(11) i)/(15)

Explanation:

Here, the given expression is
15x^(2)  = 4x -1

or,
15x^(2)  -  4x + 1   = 0

Now the discriminant (D) of a quadratic equation
ax^(2)  +b x + c   = 0

D =
b^(2)   -  4ac  = (-4)^(2)  -  4(15) (1)  = 16 - (60) = -44

Hence, the discriminant of the equation = - 44

As D< 0, so the roots will be imaginary.

Now,by quadratic formula :
x = \frac{-b \pm \sqrt{b^(2) &nbsp;- 4ac} }{2a}

So, here
x = (-(-4) \pm √(D) )/(2a) &nbsp;= (4 \pm √((-44 )) )/(30)

So, either
x = (4 + √((-44 )) )/(30) or, x = &nbsp;(4 - √((-44 )) )/(30)

or,
x = (2 +√(11) i)/(15) &nbsp;or, x = (2 - √(11) i)/(15)

User Kmsquire
by
4.6k points