Answer:
r = 0.9825; good correlation.
Explanation:
One formula for the correlation coefficient is
![r = \frac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{n\left [\sum{x}^(2)-\left (\sum{x}\right )^(2)\right]\left [\sum{y}^(2)-\left (\sum{y}\right )^(2)\right]}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/fauyqirew5c5uevgtklq7jghsl5jidxa3v.png)
The calculation is not difficult, but it is tedious.
1. Calculate the intermediate numbers
We can display them in a table.
x y xy x² y²
-3 -40 120 9 1600
1 12 12 1 144
5 72 360 25 5184
7 137 959 49 18769
Σ = 10 181 1451 84 25697
2. Calculate the correlation coefficient
![r = \frac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^(2)-\left (\sum{x}\right )^(2)\right]\left [n\sum{y}^(2)-\left (\sum{y}\right )^(2)\right]}}\\\\= \frac{4* 1451 - 10* 181}{\sqrt{[4* 84 - 10^(2)][4*25697 - 181^(2)]}}\\\\= (5804 - 1810)/(√([336 - 100][102788 - 32761]))\\\\= (3994)/(√(236*70027))\\\\= (3994)/(√(16526372))\\\\= (3994)/(4065)\\\\= \mathbf{0.9825}](https://img.qammunity.org/2020/formulas/mathematics/high-school/epaq4ctryl883qojou024oppdd1r4ki22k.png)
The closer the value of r is to +1 or -1, the better the correlation is. The values of x and y are highly correlated.