222k views
1 vote
Use the given information to find the number of degrees of​ freedom, the critical values chi Subscript Upper L Superscript 2 and chi Subscript Upper R Superscript 2​, and the confidence interval estimate of sigma. It is reasonable to assume that a simple random sample has been selected from a population with a normal distribution. Nicotine in menthol cigarettes 80​% ​confidence; nequals22​, sequals0.28 mg.

2 Answers

3 votes

Answer: Degree of freedom =
df=21

Critical values :


\chi^2 _(\alpha/2 , df)=29.6151


\chi^2 _(1-\alpha/2 , df)=13.2396

Confidence interval :
2358<\sigma<0.3526

Explanation:

We know that the confidence interval for population standard deviation
(\sigma) is given by :-


\sqrt{((n-1)s^2)/(\chi^2_(\alpha/2))}<\sigma<\sqrt{((n-1)s^2)/(\chi^2_(1-\alpha/2))}

, where n = Sample size.

s= sample standard deviation.


\chi^2_(\alpha/2) and
\chi^2_(1-\alpha/2) = Critical values.

Given : Confidence level : c= 80%=0.80

Then, significance level =
\alpha=1-0.80=0.20

Sample size : n= 22

Degree of freedom =
df=n-1=22-1=21

Then, by using Chi-square distribution table ,


\chi^2 _(\alpha/2 , df)=\chi^2_{{0.10,\ 21}=29.6151


\chi^2 _(1-\alpha/2 , df)=\chi^2_{{0.90,\ 21}=13.2396

Sample standard deviation is given to be s= 0.28 mg.

Then , the 80% confidence interval estimate of
\sigma will be :-


\sqrt{((21)(0.28)^2)/(29.6151)}<\sigma<\sqrt{((21)(0.28)^2)/(13.2396)}\\\\=√(0.05559326)<\sigma<√(0.12435421)\\\\=0.23578223<\sigma<0.3526389\\\\\approx0.2358<\sigma<0.3526

Hence, the required confidence interval :
2358<\sigma<0.3526

User Steve Severance
by
8.8k points
3 votes

Answer:

0.16 <\sigma <0.13

Explanation:

given

S=0.28

n=22

d_f=n-1 =22-1 =21


\chi_(L)^(2)=\chi _(0.995)^(2)=64.278


\chi_(U)^(2)=\chi _(0.005)^(2)=96.578

now

80% confidence interval for Standard deviation is given by


\sqrt{((n-1)S^(2))/(\chi _(U)^(2))}<\sigma<\sqrt{((n-1)S^(2))/(\chi _(L)^(2))}

=
\sqrt{((22-1)(0.28)^(2))/(64.27)}<\sigma<\sqrt{((22-1)(0.28)^(2))/(96.578)}

=0.16 <\sigma <0.13

User Whatswrong
by
8.4k points