Answer:
![\Delta S = S_2-S_1 = 0.08835 \frac {BTU} {Lb ^ {\circ} R}](https://img.qammunity.org/2020/formulas/physics/college/69r3y0hs7010s882ihdzk2tihj7k2yzf4n.png)
Step-by-step explanation:
A) In order to solve the table it is necessary to consult tables A11-E and A10E for refrigerant R134-a
In this way we obtain that:
![S_1 = S_f = 0.0648 \frac {BTU} {Lb. ^ {\circ} R}](https://img.qammunity.org/2020/formulas/physics/college/8sp685yvpe0rvy1e7zxyqgojl75c11qkdy.png)
In this way,
![S_2 = S_f + x_2 (S_g-S_f) = 0.0902 + 0.5 (0.2161-0.0902)](https://img.qammunity.org/2020/formulas/physics/college/qktmf9hi2mp5mewe1v1p36ktg2ipguzcet.png)
![S_2 = 0.15315 \frac {BTU} {Lb ^ {\circ} R}](https://img.qammunity.org/2020/formulas/physics/college/1mz5h1ck4pmisksjpkkye6m46bs4dcsmuw.png)
In this way the entropy change is,
![\Delta S = S_2-S_1 = 0.08835 \frac {BTU} {Lb. ^ {\°} R}](https://img.qammunity.org/2020/formulas/physics/college/mgsapebpaenb568osrhxpi9jglcw15gg1e.png)
B) Whenever entropy yields a positive result, the process can be carried out adiabatically.