30.4k views
5 votes
Let f : \mathbb{R}^{2} \to \mathbb{R}^{2} be the linear transformation defined by f(\vec{x}) = \left[\begin{array}{cc} 4 &3\cr 2 &1 \end{array}\right] \vec{x}. Let \begin{array}{lcl} \mathcal{B} & = & \lbrace \left<1,-1\right>, \left<2,-3\right> \rbrace, \\ \mathcal{C} & = & \lbrace \left<1,1\right>, \left<-2,-1\right> \rbrace, \end{array} be two different bases for \mathbb{R}^{2}. Find the matrix \lbrack f \rbrack_{\mathcal{B}}^{\mathcal{C}} for f relative to the basis \mathcal{B} in the domain and \mathcal{C} in the codomain.

User TheBoss
by
5.2k points

1 Answer

2 votes

Answer:


\lbrack f \rbrack_{\mathcal{B}}^{\mathcal{C}}=\left[\begin{array}{cc} 1 &amp;3\cr 0 &amp;2 \end{array}\right]

Explanation:

Remember that
\lbrack f \rbrack_{\mathcal{B}}^{\mathcal{C}} is the matrix whose columns are the images under f of the vectors of the basis
\mathcal{B} written in the coordinates of the basis
\mathcal{C}. Then we have to do the following:

  1. Find the
    \mathcal{C} -- coordinates of any vector
    \vec{x}=\left<x,y\right>\in\mathbb{R}^2, that is,
    \lbrack \vec{x} \rbrack_{\mathcal{C}}.
  2. Calculate the images under f of the vectors
    \vec{v_1}=\left<1,-1\right> and
    \vec{v_2}= \left<2,-3\right>, that is,
    f(\vec{v_1}) and
    f(\vec{v_2}).
  3. Find the
    \mathcal{C} -- coordinates of
    f(v_1) and
    f(v_2), that is,
    \lbrack f(v_1) \rbrack_{\mathcal{C}} and
    \lbrack f(v_2) \rbrack_{\mathcal{C}}.

For (1), note that any vector
\vec{x}=\left<x,y\right>\in\mathbb{R}^2 can be written as
\\ \vec{x}=\left<x,y\right>=(-x+2y)\left<1,1\right>+(-x+y)\left<-2,-1\right>=(-x+2y)\vec{v_1}+(-x+y)\vec{v_2}. Therefore, the
\mathcal{C} -- coordinates of
\vec{x} are
\\ \lbrack \vec{x} \rbrack_{\mathcal{C}}=\left<-x+2y,-x+y\right>.

For (2), we calculate:


f(\vec{v_1}) = \left[\begin{array}{cc} 4 &amp;3\cr 2 &amp;1 \end{array}\right] \left[\begin{array}{c}\phantom{-}1 \cr -1 \end{array}\right]=\left[\begin{array}{c}1 \cr 1 \end{array}\right]


f(\vec{v_1}) = \left[\begin{array}{cc} 4 &amp;3\cr 2 &amp;1 \end{array}\right] \left[\begin{array}{c}\phantom{-}2 \cr -3 \end{array}\right]=\left[\begin{array}{c}-1 \cr \phantom{-}1 \end{array}\right]

Now we use the results obtained in steps (1) and (2) for finding
\lbrack f(v_1) \rbrack_{\mathcal{C}} and
\lbrack f(v_2) \rbrack_{\mathcal{C}} as requested in (3):


\lbrack f(v_1) \rbrack_{\mathcal{C}}=\left<-1+2,-1+1\right>=\left<1,0\right>


\lbrack f(v_2) \rbrack_{\mathcal{C}}\left<1+2,1+1\right>=\left<3,2\right>.

Therefore, the matrix
\lbrack f \rbrack_{\mathcal{B}}^{\mathcal{C}} for f relative to the basis
\mathcal{B} in the domain and
\mathcal{C} in the codomain is given by


\lbrack f \rbrack_{\mathcal{B}}^{\mathcal{C}}=\left[\begin{array}{cc} 1 &amp;3\cr 0 &amp;2 \end{array}\right]

User Stefanbc
by
5.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.