Answer:
1) The zeros of the function is at t=-3,-1.
2) The vertex of the parabola is (-2,-1).
Explanation:
Given : Function
![h(t)=t^2+4t+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/wel0yqlxb6kvtd8k5uwdwh4saz89qnakzu.png)
To find :
1) What are the zeros of the function?
2) What is the vertex of the parabola?
Solution :
1) The zeros of the function,
To find the roots of the equation, replace h(t)=0 and solve.
![t^2+4t+3=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/503bxyaqkqvlad9c6gnziwmsknouo98n3k.png)
Applying middle term split,
![t^2+3t+t+3=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7rpepd2yxglnx9mee1bl36aekdapycn082.png)
![t(t+3)+1(t+3)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/e8bxatocj5bui2lpstxdc9hh3kjnieo2ix.png)
![(t+3)(t+1)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/eof3514qhme4g3991bmbsvmmc9ozydpttm.png)
![t=-3,-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/jtihxol59bzw70mivc5g5wsxkx7kuwv0lr.png)
The zeros of the function is at t=-3,-1.
2) The vertex of the parabola,
Comparing
with
![t^2+4t+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/a25olwsjb8aepylu745a3jrkx5rhqufcbs.png)
Here, a=1, b=4, c=3
The x -coordinate of the vertex is given by
![-(b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w61hv58flxa5b8d1wyhv8i8ru27j69oha7.png)
![-(b)/(2a)=-(4)/(2(1))=-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/7o9sztucrc7yu7yq7wqj4k250fx67ago2w.png)
For y-coordinate put t=-2 in the function,
![h(-2)=(-2)^2+4(-2)+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/ohxby3bi6p2ltuida06395ddn5cjnmvot2.png)
![h(-2)=4-8+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/bid131ed1iykaym72gu2sschcv44dcz2nq.png)
![h(-2)=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9syzuxixrdjzo386jwd9ck48aqag0zqwav.png)
The vertex of the parabola is (-2,-1).