Answer:
![c = 4\sqrt2\\\\S'(4\sqrt2) = 0\\\\S''(4\sqrt2)=(1)/(2\sqrt2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1bvys4ij1j0930i56e8xiqxds4tur43lxx.png)
Explanation:
We are given the following information in the question:
The product of two numbers is 32.
Let the two numbers be x and y, then,
![x* y = 32\\\\y = \displaystyle(32)/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5upazq6bzaped5xugikckbjyxv25nipipq.png)
The sum of the two numbers = S(x)
![S(x) = x + \displaystyle(32)/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u9g7k0390jyveu6va00ko31vgi692hqj2w.png)
First, we differentiate S(x) with respect to x, to get,
![\displaystyle(d(S(x)))/(dx) = (d( x +(32)/(x)))/(dx) = 1 - (32)/(x^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bkf4i2youd3xze7zqsy3d6nlceruzq1s72.png)
Equating the first derivative to zero, we get,
![(d(S(x)))/(dx) = 0\\\\1 - (32)/(x^2)= 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/hteqgvihm886mf11qob1qjrjvfncbszzai.png)
Solving, we get,
![x =\pm √(32)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qiq22xumjoyzej3x5v5ko2hohzi0v6uimi.png)
Again differentiation S(x), with respect to x, we get,
![\displaystyle(d^2(S(x)))/(dx^2) =(64)/(x^3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/84e7po07dhf2l159os72vsswx1amxe42qx.png)
At
,
![(d^2(S(x)))/(dx^2) > 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/onfjmw274d3vq7zfnre6kwudtxb9v47df8.png)
Thus, minima occurs at x =
for S(x).
If c be the smaller of the two numbers that minimize the sum, then,
![c = √(32) = 4\sqrt2\\\\S'(c) = 1 - \displaystyle(32)/(32) = 0\\\\S''(c) = (64)/(32√(32)) = (1)/(2\sqrt2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qhladc3eiwxo5vva5zgclhcwdglmvhm2k5.png)