185k views
2 votes
Chapter 06, Practice Problem 6.35 A cylindrical metal specimen having an original diameter of 11.72 mm and gauge length of 51.3 mm is pulled in tension until fracture occurs. The diameter at the point of fracture is 6.58 mm, and the fractured gauge length is 72.7 mm. Calculate the ductility in terms of (a) percent reduction in area (percent RA), and (b) percent elongation (percent EL).

1 Answer

3 votes

Answer:

Initial area of the specimen


{\left( {{\rm{Area}}} \right)_{{\rm{initial x-section}}}} = \pi {\left( {\frac{{{d_0}}}{2}} \right)^2}

Where,
{d_i} is the initial diameter of the metal specimen.

Substituting
11.72{\rm{ mm}} for
{d_i}


\begin{array}{c}\\{\left( {{\rm{Area}}} \right)_{{\rm{initial x-section}}}} = \pi {\left( {\frac{{11.72{\rm{ mm}}}}{2}} \right)^2}\\\\ = 107.881{\rm{ m}}{{\rm{m}}^2}\\\end{array}

Final minimum area of the specimen


{\left( {{\rm{Area}}} \right)_{{\rm{final minimum}}}} = \pi {\left( {\frac{{{d_f}}}{2}} \right)^2}(Area)

Where
{d_f} is final minimum diameter.

Substituting
6.58{\rm{ mm}} for
{d_f}


\begin{array}{c}\\{\left( {{\rm{Area}}} \right)_{{\rm{final minimum}}}} = \pi {\left( {\frac{{6.58{\rm{ mm}}}}{2}} \right)^2}\\\\ = 34.00491{\rm{ m}}{{\rm{m}}^2}\\\end{array}

Percentage reduction in the area.


\% {\rm{RA}} = \frac{{{{\left( {{\rm{Area}}} \right)}_{{\rm{initial x-section}}}} - {{\left( {{\rm{Area}}} \right)}_{{\rm{final minimum}}}}}}{{{{\left( {{\rm{Area}}} \right)}_{{\rm{initial x-section}}}}}} * 100%

Substituting
107.881{\rm{ m}}{{\rm{m}}^2} for {\left( {{\rm{Area}}} \right)_{{\rm{initial x-section}}}} and
34.00491{\rm{ m}}{{\rm{m}}^2} for
{\left( {{\rm{Area}}} \right)_{{\rm{final minimum}}}}


\begin{array}{c}\\\% {\rm{RA}} = \frac{{107.881{\rm{ m}}{{\rm{m}}^2} – 34.00491{\rm{ m}}{{\rm{m}}^2}}}{{107.881{\rm{ m}}{{\rm{m}}^2}}} * 100\\\\ = 0.684792* 100\\\\ = 68.47925\% \\\end{array}

(b)

The expression for the percent increase in the gauge length of the specimen.


\% {\rm{EL}} = \frac{{{l_f} - {l_i}}}{{{l_i}}} * 100%

Substituting
72.7{\rm{ mm}} for
{l_f} and
51.3{\rm{ mm}}for
{l_i}


\begin{array}{c}\\\% {\rm{EL}} = \frac{{72.7{\rm{ mm}} - 51.3{\rm{ mm}}}}{{51.3{\rm{ mm}}}} * 100\\\\ = 0.417154* 100\\\\ = 41.7154\% \\\end{array}

User Louie Bacaj
by
8.6k points