78.7k views
4 votes
Number 9, c,e, f can anyone help me solve them

Number 9, c,e, f can anyone help me solve them-example-1
User Mista
by
7.3k points

1 Answer

1 vote

Answer:

9. c.
-4.5<x<4.5

9. e.
x\in (-4,-3)\cup (-1,0)

9. f.
x\in (2,4)\cup (6,8)

Explanation:

9. c. Given


|4-|2x||<5

Rewrite it as follows:


||2x|-4|<5

This inequality is equivalent ot the double inequality


-5<|2x|-4<5

Add 4:


-5+4<|2x|-4+4<5+4\\ \\-1<|2x|<9

But the absolute value |2x| is always no less than 0, so


0\le |2x|<9\\ \\-9<2x<9\\ \\-4.5<x<4.5

9. e. Given


1<|x+2|<2

This inequality is equivalent to


\left\{\begin{array}{l}|x+2|>1\\|x+2|<2\end{array}\right.\Rightarrow \left\{\begin{array}{l}\left[\begin{array}{l}x+2>1\\x+2<-1\end{array}\right.\\-2<x+2<2\end{array}\right.\Rightarrow \left\{\begin{array}{l}\left[\begin{array}{l}x>-1\\x<-3\end{array}\right.\\-4<x<0\end{array}\right.

So,


x\in (-4,-3)\cup (-1,0)

9. f. Given


1<|2x-10|-1<5

Add 1:


2<|2x-10|<6

This inequality is equivalent to


\left\{\begin{array}{l}|2x-10|>2\\|2x-10|<6\end{array}\right.\Rightarrow \left\{\begin{array}{l}\left[\begin{array}{l}2x-10>2\\2x-10<-2\end{array}\right.\\-6<2x-10<6\end{array}\right.\Rightarrow \left\{\begin{array}{l}\left[\begin{array}{l}2x>12\\2x<8\end{array}\right.\\4<2x<16\end{array}\right.\\ \\\left\{\begin{array}{l}\left[\begin{array}{l}x>6\\x<4\end{array}\right.\\2<x<8\end{array}\right.

So,


x\in (2,4)\cup (6,8)

User Bing Ren
by
8.2k points