Answer:
Option A.
Explanation:
Note : The given function is linear, all options are incorrect for linear function.
Consider the given function is
![f(x)=√(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/840c0a8l8hhmwbuvy5n12xbucwdqf2xg20.png)
For x=81,
![f(81)=√(81)=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/dwpzwd8fxm0fllun4trjolvagtfx617sd1.png)
For x=36,
![f(36)=√(36)=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/dj1iiabg7sooyh9jlx6ndzx09rsox2lcht.png)
For x=1,
![f(1)=√(1)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/igodecalm70lvb6a7lipxh2t1mez9kj293.png)
It means the given function passes through the points (81,9), (36,6) and (1,1).
If a graph reflected across y-axis then
![(x,y)\rightarrow (-x,y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bwc8qpf248mly8clxkoq4j1rva2p1ggw7x.png)
So, the new function is
![g(x)=√(-x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4zvgxsjcheokhy47utta85iu7s0q9li7uo.png)
![(81,9)\rightarrow (-81,9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uvr33hs97wfizv9u4vtk0vrtovttrdad4f.png)
![(36, 6)\rightarrow (-36, 6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/g4xyc9hy00egzgx19zus9qng0frb9m13ch.png)
![(1, 1)\rightarrow (-1, 1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/f8skpj81vbjs5mdwueoxgu2uziaja5fzws.png)
It means points (-81, 9), (-36, 6) and (-1, 1) lie on the graph of the reflection.
Therefore, the correct option is A.