1.1k views
5 votes
What are the zeros of the quadratic function f(x) = 2x2 – 10x – 3? x = StartFraction negative 5 Over 2 EndFraction – StartFraction StartRoot 31 EndRoot Over 2 EndFraction and x = StartFraction negative 5 Over 2 EndFraction + StartFraction StartRoot 31 EndRoot Over 2 EndFraction x = StartFraction negative 5 Over 2 EndFraction – StartFraction StartRoot 37 EndRoot Over 8 EndFraction and x = StartFraction negative 5 Over 2 EndFraction + StartFraction StartRoot 37 EndRoot Over 8 EndFraction x = StartFraction 5 Over 2 EndFraction – StartFraction StartRoot 31 EndRoot Over 2 EndFraction and x = StartFraction 5 Over 2 EndFraction + StartFraction StartRoot 31 EndRoot Over 2 EndFraction x = StartFraction 5 Over 2 EndFraction – StartFraction StartRoot 37 EndRoot Over 8 EndFraction and x = StartFraction 5 Over 2 EndFraction + StartFraction StartRoot 37 EndRoot Over 8 EndFraction

2 Answers

5 votes

Answer:

Explanation:

It’s D

User Xslibx
by
6.4k points
3 votes

Answer:


x=(5)/(2)+(√(31))/(2)\ \ or\ \ x=(5)/(2)-(√(31))/(2)

Explanation:

Given the following Quadratic function:


f(x) = 2x^2 - 10x -3

We must make it equal to zero:


0 = 2x^2 - 10x -3

Now we need to apply the Quadratic formula. This is:


x=(-b\± √(b^2-4ac))/(2a)

In this case we can identify that:


a=2\\b=-10\\c=-3

Finally, substituting these values into the Quadratic formula, we get the following solutions:


x=(-(-10)\±√((-10)^2-4(2)(-3)))/(2(2))


x=(5)/(2)+(√(31))/(2)\ \ or\ \ x=(5)/(2)-(√(31))/(2)

User Daniil Rutskiy
by
5.7k points