Answer:
E) 0.977
Step-by-step explanation:
From the question we have that the mean number of transactions is 478 and standard deviation is 64.
and
![\sigma=478](https://img.qammunity.org/2020/formulas/advanced-placement-ap/middle-school/3aw1de51iuzd7bw73j6pqwvzj9nrev3szk.png)
We want to find the proportion of daily transaction that is greater than 350 i.e
![P(X\:>\:350)](https://img.qammunity.org/2020/formulas/advanced-placement-ap/middle-school/nfgrtt2kro96q1orfcu7zewp27tpy87a3t.png)
We first find the z-score using the formula:
![Z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5loxpkwxtms4jupgd0o8ten98v7113nywe.png)
![Z=(350-478)/(64)=-2](https://img.qammunity.org/2020/formulas/advanced-placement-ap/middle-school/25pa6udp23yhuo1bqrbot3z0zzjqekak4w.png)
Reading from the standard normal distribution table
![P(X\:<\:350)=0.0228](https://img.qammunity.org/2020/formulas/advanced-placement-ap/middle-school/14kmxpuu6b2f9tb0xm9idpfo3v4i0ccw8z.png)
Note that:
![P(X\:>\:350)=1-P(X\:<\:350)](https://img.qammunity.org/2020/formulas/advanced-placement-ap/middle-school/j2twswkzyohcy0us9ryjg0jb1lh5y6e8ad.png)
![\implies P(X\:>\:350)=1-0.0228=0.9772](https://img.qammunity.org/2020/formulas/advanced-placement-ap/middle-school/7onpa05h1phig84niudi1bj7k61im7ndwb.png)
Therefore the proportion of daily transactions greater than 350 is 0.977
The last option is correct