170k views
4 votes
Which of the following is the inverse of the given function? Y=3x^5-4

User Michali
by
8.5k points

1 Answer

1 vote


y\textrm{ }=\textrm{ }(\frac{x\textrm{ }+\textrm{ }4}{3} )^{(1)/(5) }

Explanation:

Given function
y\textrm{ }=\textrm{ }3x^(5)\textrm{ }-\textrm{ }4

To find an inverse for any given function, which is of the form
y=f(x), always swap
x and
y in the equation and try to get the form
x=f(y). Now, swapping back
x and
y, we get the inverse function.

On swapping
x and
y, we get
x\textrm{ }=\textrm{ }3y^(5)\textrm{ }-\textrm{ }4


y\textrm{ }+\textrm{ }4\textrm{ }=\textrm{ }3x^(5)


x^(5)\textrm{ }=\textrm{ }\frac{y\textrm{ }+\textrm{ }4}{3}


x\textrm{ }=\textrm{ }(\frac{y\textrm{ }+\textrm{ }4}{3} )^{(1)/(5) }

Swapping back
x and
y, we get
y\textrm{ }=\textrm{ }(\frac{x\textrm{ }+\textrm{ }4}{3} )^{(1)/(5) }

This is the inverse function.

User Supun Praneeth
by
7.5k points