Answer:
![(3y^(4))/(5x)\textrm{ or }(3)/(5)x^(-1)y^(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d1ufinj20ayt3bfxi6f7frnc8neqj0flpr.png)
Explanation:
The expression is:
![(2x^(3)y^(6))/(5x^(2)y)* (15x^(2))/(10x^(4)y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jz7yqdjnfxwhcqpryki30orwzn2rwqenxu.png)
First, we will multiply the numerators together and denominators together.
This gives,
![((2* 15)(x^(3)* x^(2))(y^(6)))/((5* 10)(x^(2)* x^(4))(y* y))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a6myf8j7377ckjgotl8gjo7jvatd2kwfbe.png)
Now, we use the exponent property
.
This gives,
![(30x^(3+2)y^(6))/(50x^(2+4)y^(2))\\=(30x^(5)y^(6))/(50x^(6)y^(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq2jrd2ydjqotdd6xndg7xje3fh34jz3zh.png)
Now, we use the exponent property
![(x^(a))/(x^(b))=x^(a-b)](https://img.qammunity.org/2020/formulas/mathematics/college/9bhqhv1mo4ys9wcqja95dzw3xf1ye0zuyb.png)
This gives,
![(30x^(5)y^(6))/(50x^(6)y^(2))=(3)/(5)x^(5-6)y^(6-2)=(3)/(5)x^(-1)y^(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8a4d2nttcesprii06eskgnwryjoah1zzvs.png)
From the properties of exponents,
![x^(-a)=(1)/(x^(a))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ufk1s2xrcm0yitb5jv58nop4bz4a3asmqh.png)
So,
![(3)/(5)x^(-1)y^(4)=(3y^(4))/(5x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wmgvg0cnmeevn9144szojsahoh1ukujlql.png)