99.2k views
0 votes
Inverse of A=300e^-0.013t

1 Answer

5 votes

Answer:


A^(-1)(t)=-(ln((t)/(300)))/(0.013)

Explanation:

we have


A=300e^(-0.013t)

Exchange the variables A for t and t for A


t=300e^(-0.013A)

Isolate the variable A


(t)/(300)=e^(-0.013A)

Apply ln (natural logarithm) both sides


ln((t)/(300))=ln[e^(-0.013A)]


ln((t)/(300))=(-0.013A)ln(e)

Remember that


ln(e)=1


ln((t)/(300))=(-0.013A)


A=-(ln((t)/(300)))/(0.013)

Let


A^(-1)(t)=A

so


A^(-1)(t)=-(ln((t)/(300)))/(0.013)

User VeeArr
by
8.2k points