Answer:
a) 0.159
b) 0.0281
c) 0.816
Explanation:
We are given the following information in the question:
Mean, μ = 19.2 inches
Standard Deviation, σ = 1.2 inch
We are given that the distribution of lengths is a bell shaped distribution that is a normal distribution.
Formula:
![z_(score) = \displaystyle(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/college/5bpvqdbyqd8y38zhlcp80hz1p4ka5nivnl.png)
a) P(baby will have a length of 20.4 inches or more)
![P(x \geq 20.4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l7c9cvw6nauz2f41cqtjxyov0rqrnihh67.png)
![P( x \geq 20.4) = P( z \geq \displaystyle(20.4 - 19.2)/(1.2)) = P(z \geq 1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l8boq1gjh15v8e1la75c665n2cnffst8eh.png)
![= 1 - P(z < 1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gurwmbbn11kjef9q6jwguwmjviuqvsihw9.png)
Calculation the value from standard normal z table, we have,
![P(x \geq 20.4) = 1 - 0.841 = 0.159 = 15.9\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/4ymqnwtn35pryqg4uxp8y7l17mzt4bvo3p.png)
b) P( baby will have a length of 21.5 inches or more)
![P(x \geq 21.5) = P(z \geq \displaystyle(21.5-19.2)/(1.2)) = P(z \geq 1.91)\\\\P( z \geq 1.91) = 1 - P(z < 1.91)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1mpxb25plaxdop2yw5e0ntercdlpy5w29m.png)
Calculating the value from the standard normal table we have,
![1 - 0.972 = 0.0281 = 2.81\%\\P( x \geq 21.5) = 2.81\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/g5z3sp823enzjgmu2xn720iwu1sf1an5pv.png)
c)P(baby will have a length between 17.6 and 20.8 inches)
![P(17.6 \leq x \leq 20.8) = P(\displaystyle(17.6 - 19.2)/(1.2) \leq z \leq \displaystyle(20.8-19.2)/(1.2)) = P(-1.33 \leq z \leq 1.33)\\\\= P(z \leq 1.33) - P(z < -1.33)\\= 0.908 - 0.092 = 0.816 = 81.6\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/22mh50m0hkiozfxhw107kzy9biv6na3udu.png)
![P(17.6 \leq x \leq 20.8) = 81.6\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/sach32e7094nubdorf1le2nc1pi14rlu48.png)