Answer:Circular cross-section
Step-by-step explanation:
Given
Two rods of brass having circular and square cross-section
Diameter of circular cross-section=2 a
Cross-section
![A_c=(\pi (2a)^2)/(4)=\pi a^2](https://img.qammunity.org/2020/formulas/physics/college/mu9x3pmhn9bei4vzwe01y0clpv4vh3kmrz.png)
length of square=2 a
Cross-section
![A_s=(2a)^2=4a^2](https://img.qammunity.org/2020/formulas/physics/college/wha9b5jhw7spow27rf27c72shchjcwclg7.png)
Change in Length of rod
![=(PL)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/4ktgliqvohj50tpomqav4b91srvwlbry2s.png)
![\delta L\propto (1)/(A)](https://img.qammunity.org/2020/formulas/physics/college/as0s4dmt8vji7jcjvnrbibnb0crijwbgha.png)
considering all other factors remaining same
Area of cross-section of circular rod is less than the area of cross-section of square rod
thus elongation is more in circular rod