63.1k views
2 votes
Solve the system of equations by forming a matrix equation. State your answer as an ordered pair.

x+2y= -7
-3x-5y=23

User Arboles
by
7.9k points

2 Answers

7 votes

Answer:

Solve the system of equations using elimination/combination method. State your answer as an ordered pair.

{x,y} = {-11,2}

Explanation:

Solve equation [1] for the variable x

[1] x = -2y - 7

Plug this in for variable x in equation [2]

[2] -3•(-2y-7) - 5y = 23

[2] y = 2

Solve equation [2] for the variable y

[2] y = 2

By now we know this much :

x = -2y-7

y = 2

Use the y value to solve for x

x = -2(2)-7 = -11

{x,y} = {-11,2}

User Angelita
by
8.9k points
4 votes

Answer:

(x,y)=(-11,2)

Explanation:

x+2y=-7, -3x-5y=23; Matrix form:
A\left[\begin{array}{ccc}1&2\\-3&-5\end{array}\right] .X\left[\begin{array}{ccc}x\\y\end{array}\right] =B\left[\begin{array}{ccc}-7\\23\end{array}\right]; X=A^-1.B; If A=\left[\begin{array}{ccc}a&b\\c&d\end{array}\right] ; so\\  \\A^-1 =(1/(ad-bc))*\left[\begin{array}{ccc}d&-b\\-c&a\end{array}\right]; A^-1 =(1/-5+6)*\left[\begin{array}{ccc}-5&-2\\3&1\end{array}\right]=\left[\begin{array}{ccc}-5&-2\\3&1\end{array}\right] , we  have:   [tex]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-5&-2\\3&-1\end{array}\right] .\left[\begin{array}{ccc}-7\\23\end{array}\right]=\left[\begin{array}{ccc}-11\\2\end{array}\right]; Finally (x,y) = (-11,2)

User Antony Shumskikh
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories