Answer with explanation:
As per given , we have
![\overline{x}=5.04](https://img.qammunity.org/2020/formulas/mathematics/college/solohw7klvss9y3e6k8m5kgy3gqee31nsv.png)
![s=0.96](https://img.qammunity.org/2020/formulas/mathematics/college/qs90mc8mxf5gpresfx5lsktoljwbh5psia.png)
n=12
df = 12-1=11
Since population standard deviation is unknown , so we use t-test.
Critical t-value for 99% confidence (1% significance):
![t_(\alpha/2, df)=t_(0.005,12)=3.1058](https://img.qammunity.org/2020/formulas/mathematics/college/kfplvpfnb28pog21zyh5mdab80wbqjimmk.png)
Confidence interval for population mean :_
![\overline{x}\pm t_(\alpha/2)(s)/(√(n))\\\\=5.04\pm (3.1058)(0.96)/(√(12))\\\\\approx5.04\pm0.861\\\\= (5.04-0.861,\ 5.04+0.861)\\\\=(4.179,\ 5.901)](https://img.qammunity.org/2020/formulas/mathematics/college/8yvws5sug2trmitsue3239ypctptx727gr.png)
Hence, the 99% confidence interval for the mean amount of time that students spend in the shower each day. Assume normality.=
![(4.179,\ 5.901)](https://img.qammunity.org/2020/formulas/mathematics/college/mxhsfu8o7dhy9dgr150av0nd7tk7vyvzwh.png)
a) Lower limit of the 99% interval = 4.179
b) Upper limit of the 99% interval = 5.901