12.8k views
0 votes
Alyze the following special produ

ve USII
1.
(3x + 5)(2x - 3). Solve using the F.O.I.L.
2.
(x + 2)(x – 13). Solve using the F.O.I.L.
3. (x + 5)2. Solve using the square of Binomial.
1. (x – 3)2 Solve using the square of Binomial.

1 Answer

5 votes

Answer:

1) Solving the term
(3x + 5)(2x - 3) using F.O.I.L we get
\mathbf{6x^2+x-15}

2) solving the term
(x + 2)(x - 13) using F.O.I.L we get
\mathbf{x^2-11x-26}

3) Solving
(x+5)^2 using square of binomial we get
\mathbf{x^2+10x+25}

4) Solving
(x+5)^2 using square of binomial we get
\mathbf{x^2-6x+9}

Explanation:

1) (3x + 5)(2x - 3). Solve using the F.O.I.L.

F.O.I.L stands for First, Outer Inner Last

We have
(3x + 5)(2x - 3)

First: 3x(2x)

Outer: 3x(-3)

Inner: 5(2x)

Last: 5(-3)

Solving we get:


(3x + 5)(2x - 3)\\=3x(2x)+3x(-3)+5(2x)+5(-3)\\=6x^2-9x+10x-15\\=6x^2+x-15

So, solving the term
(3x + 5)(2x - 3) using F.O.I.L we get
\mathbf{6x^2+x-15}

2) (x + 2)(x – 13). Solve using the F.O.I.L.

F.O.I.L stands for First, Outer Inner Last

We have
(x + 2)(x -13)

First: x(x)

Outer: x(-13)

Inner: 2(x)

Last: 2(-13)

Solving we get:


(x + 2)(x - 13)\\=x(x)+x(-13)+2(x)+2(-13)\\=x^2-13x+2x-26\\=x^2-11x-26

So, solving the term
(x + 2)(x - 13) using F.O.I.L we get
\mathbf{x^2-11x-26}

3) (x + 5)^2. Solve using the square of Binomial.

The square of binomial is:
(a+b)^2=a^2+2ab+b^2

Solving:


(x+5)^2\\=(x)^2+2(x)(5)+(5)^2\\=x^2+10x+25

So, solving
(x+5)^2 using square of binomial we get
\mathbf{x^2+10x+25}

4) (x -3)^2. Solve using the square of Binomial.

The square of binomial used is:
(a-b)^2=a^2-2ab+b^2

Solving:


(x-3)^2\\=(x)^2-2(x)(3)+(3)^2\\=x^2-6x+9

So, solving
(x+5)^2 using square of binomial we get
\mathbf{x^2-6x+9}

User Jignesh Chanchiya
by
4.0k points