204k views
4 votes
TIMED QUESTION NEED HELP FASTWhat values of b satisfy 3(2b + 3)2 = 36?

a. b = StartFraction negative 3 + 2 StartRoot 3 EndRoot Over 2 EndFraction andStartFraction negative 3 minus 2 StartRoot 3 EndRoot Over 2 EndFraction
b. b = StartFraction negative 3 + 2 StartRoot 3 EndRoot Over 2 EndFraction and StartFraction negative 3 minus 2 StartRoot 3 EndRoot Over 2 EndFraction
c. b = StartFraction 3 Over 2 EndFraction and StartFraction negative 9 Over 2 EndFraction
d. b = Start Fraction 9 Over 2 EndFraction and StartFraction negative 3 Over 2 EndFraction

User Martin G
by
4.8k points

2 Answers

3 votes

Answer:

A

Explanation:

User Justin Rice
by
5.2k points
2 votes

Answer:


(-3+ 2√(3))/(2)\textrm{ and }(-3- 2√(3))/(2)

Explanation:


3(2b+3)^(2)=36\\(3(2b+3)^(2))/(3)=(36)/(3)\\(2b+3)^(2)=12

Taking square root both sides, we get


\sqrt{(2b+3)^(2)}=\pm √(12)\\2b+3=\pm √(4* 3)\\2b+3=\pm 2√(3)\\2b+3-3=\pm 2√(3)-3\\2b=-3\pm 2√(3)\\b=(-3\pm 2√(3))/(2)\\b=(-3+ 2√(3))/(2)\textrm{ or }b=(-3- 2√(3))/(2)

Therefore, the values of
b are:


(-3+ 2√(3))/(2)\textrm{ and }(-3- 2√(3))/(2)

User Yijing Shi
by
4.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.