Step-by-step explanation:
a)
After a short time dt, the point moves a short distance ds.
ds = v dt
The distance is equal to the arc length:
r dθ = v dt
Radius is a function of time:
(ut + r₀) dθ = v dt
Separate the variables:
1/v dθ = 1 / (ut + r₀) dt
Multiply both sides by u:
u/v dθ = u / (ut + r₀) dt
Integrate both sides:
u/v θ [θ₁ to θ₂] = ln(ut + r₀) [t₁ to t₂]
(θ₂ − θ₁) u/v = ln(ut₂ + r₀) − ln(ut₁ + r₀)
(θ₂ − θ₁) u/v = ln[(ut₂ + r₀) / (ut₁ + r₀)]
e^((θ₂ − θ₁) u/v) = (ut₂ + r₀) / (ut₁ + r₀)
ut₂ + r₀ = (ut₁ + r₀) e^((θ₂ − θ₁) u/v)
Plug in values:
2t₂ + 2 = (0 + 2) e^((π − 0) 2/0.5)
2t₂ + 2 = 2 e^(4π)
t₂ + 1 = e^(4π)
t₂ = -1 + e^(4π)
t₂ ≈ 286750
b)
This time, a second point from the south pole moves up at the same speed and meets the first point. Logically, they meet in the middle, when θ₂ = π/2.
ut₂ + r₀ = (ut₁ + r₀) e^((θ₂ − θ₁) u/v)
2t₂ + 2 = (0 + 2) e^((π/2 − 0) 2/0.5)
2t₂ + 2 = 2 e^(2π)
t₂ + 1 = e^(2π)
t₂ = -1 + e^(2π)
t₂ ≈ 534.5