Answer with explanation:
Let
denotes the sample proportion.
As per given , we have
n= 200
![\hat{p}=(30)/(200)=0.15](https://img.qammunity.org/2020/formulas/mathematics/college/knx81irh7dtucqfdmx5si3slap4qdp9l8k.png)
Critical value for 99% confidence :
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
Confidence interval for population proportion :-
![\hat{p}\pm z_(\alpha/2) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\\\=0.15\pm (2.576)(\sqrt{(0.15(1-0.15))/(200)})\\\\\approx0.15\pm0.065\\\\=(0.15-0.065,\ 0.15+0.065)\\\\=(0.085,\ 0.215)](https://img.qammunity.org/2020/formulas/mathematics/college/b3hhb4u55lvgj9y8t370fncsdu3yv4zdv7.png)
Hence, a 99% confidence interval for the proportion of all individuals that use Firefox:
![(0.085,\ 0.215)](https://img.qammunity.org/2020/formulas/mathematics/college/bhs7lc374rthlqis7pek9jcc01rtjxl3at.png)
The lower limit on the 99% confidence interval = 0.085