Answer:
The equation for the nth term of the given arithmetic sequence is:
![\mathbf{a_n=13n+22}](https://img.qammunity.org/2022/formulas/mathematics/college/grqgfd1dlg2yikf53ud3n291tuezl5pqe1.png)
Explanation:
We need to write an equation for the nth term of the arithmetic sequence:
15,28,41 ....
The equation for arithmetic sequence is:
![a_n=a_1+(n-1)d](https://img.qammunity.org/2022/formulas/mathematics/high-school/jdlooxkpkmt6rkm8dkuaq7mb5satmo2ifz.png)
Where
is the nth term,
is first term and d is common difference
In the given sequence we have:
a₁ = 15
a₂ = 28
We can find common difference using the formula:
![a_n=a_1+(n-1)d\\Put\: n=2, a_2=28\: and\: a_1=15\\a_2=a_1+(2-1)d\\28=15+d\\d=28-15\\d=13](https://img.qammunity.org/2022/formulas/mathematics/college/te75on09tg9wknzqj7h64ytqhw6nk2hwc2.png)
So, the common difference d is 13
Now, equation for nth term will be:
![a_n=a_1+(n-1)d\\Put\:a_1=15, d=13\\a_n=15+(n-1)13\\Solving:\\a_n=15+13n-13\\a_n=13n+2](https://img.qammunity.org/2022/formulas/mathematics/college/94fp03xuo8rzyycpvguhzxq9i7ad3l5mwm.png)
So, the equation for the nth term of the given arithmetic sequence is:
![\mathbf{a_n=13n+22}](https://img.qammunity.org/2022/formulas/mathematics/college/grqgfd1dlg2yikf53ud3n291tuezl5pqe1.png)
where n=1,2,3..