17.4k views
2 votes
If f(x) = (sin x)*, find f'(pi/2).

User Aweary
by
7.3k points

1 Answer

3 votes


f(x) = sin^x(x)

We want f'(x)

So, lets derive, we can consider sin(x) as an normal x and derive it as x² going to 2x, and apply chain rule to sin(x)


f'(x)=x.sin^(x-1)(x).cos^x(x)

So just use x as pi/2

f'(π/2) = π/2 . sin^(π/2-1)(π/2) . cos^(π/2).(π/2)

sin(π/2) = 1

cos(π/2) = 0

f'(π/2) = π/2 . 1^(π/2 - 1) . 0^(π/2)

f'(π/2) = 0

User Ashwin Shirva
by
7.8k points