Answer:
a) 0.11 m
b) 6.9 m/s
c) 0.10 m
Step-by-step explanation:
We need to apply the conservation of energy theorem:
![U_e+K_(o)+U_o=K_f+U_f](https://img.qammunity.org/2020/formulas/physics/college/k7j7sskhep6jmlu5d7l30fw6vfbq7odo0r.png)
because the surface is frictionless all the elastic potential energy is converted in kinetic, so:
![(1)/(2)*k*x^2+0+0=K_f\\\\K_f=3.1J](https://img.qammunity.org/2020/formulas/physics/college/4voo8q5pjrkb8lecsxmxg9klaco8y1ucs9.png)
the second spring received 3.1J of energy, so:
![3.1J=(1)/(2)*487N/m*(x_2)^2\\x_2=0.11m](https://img.qammunity.org/2020/formulas/physics/college/y29xoaz6g1y1vls6bpr1dg1lav1hgcv1ff.png)
We know the value of the kinetic energy so:
![(1)/(2)m*(v_2)^2=3.1J\\v_2=\sqrt{(3.1J*2)/(0.13kg)}\\v_2=6.9m/s](https://img.qammunity.org/2020/formulas/physics/college/o7k9nfg0eoqhgxpt9fglzilhw1ct0emsws.png)
now if the surface has friction:
![3.1J-\µ*m*g*d=K_f\\3.1J-0.63J=K_f\\K_f=2.5J\\\\2.5J=(1)/(2)*K*x^2\\x=\sqrt{(2*2.5J)/(487)}\\x=0.10m](https://img.qammunity.org/2020/formulas/physics/college/2grf4llp16826pksluk9ksugvlc95ldgz6.png)